3.295 \(\int \frac{\tan ^4(c+d x)}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=126 \[ \frac{\left (2 a^2-3 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 b^3 d}-\frac{a \tan (c+d x)}{b^2 d}-\frac{2 (a-b)^{3/2} (a+b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b^3 d}+\frac{x}{a}+\frac{\tan (c+d x) \sec (c+d x)}{2 b d} \]

[Out]

x/a + ((2*a^2 - 3*b^2)*ArcTanh[Sin[c + d*x]])/(2*b^3*d) - (2*(a - b)^(3/2)*(a + b)^(3/2)*ArcTanh[(Sqrt[a - b]*
Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*b^3*d) - (a*Tan[c + d*x])/(b^2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.342726, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3898, 2893, 3057, 2659, 208, 3770} \[ \frac{\left (2 a^2-3 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 b^3 d}-\frac{a \tan (c+d x)}{b^2 d}-\frac{2 (a-b)^{3/2} (a+b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b^3 d}+\frac{x}{a}+\frac{\tan (c+d x) \sec (c+d x)}{2 b d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^4/(a + b*Sec[c + d*x]),x]

[Out]

x/a + ((2*a^2 - 3*b^2)*ArcTanh[Sin[c + d*x]])/(2*b^3*d) - (2*(a - b)^(3/2)*(a + b)^(3/2)*ArcTanh[(Sqrt[a - b]*
Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*b^3*d) - (a*Tan[c + d*x])/(b^2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*b*d)

Rule 3898

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[(Cos[c + d*x]^
m*(b + a*Sin[c + d*x])^n)/Sin[c + d*x]^(m + n), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[
n] && IntegerQ[m] && (IntegerQ[m/2] || LeQ[m, 1])

Rule 2893

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 1))/(a*d*f*(n + 1)), x] +
 (-Dist[1/(a^2*d^2*(n + 1)*(n + 2)), Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n + 2)*Simp[a^2*n*(n + 2) -
b^2*(m + n + 2)*(m + n + 3) + a*b*m*Sin[e + f*x] - (a^2*(n + 1)*(n + 2) - b^2*(m + n + 2)*(m + n + 4))*Sin[e +
 f*x]^2, x], x], x] - Simp[(b*(m + n + 2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 2))/
(a^2*d^2*f*(n + 1)*(n + 2)), x]) /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || Intege
rsQ[2*m, 2*n]) &&  !m < -1 && LtQ[n, -1] && (LtQ[n, -2] || EqQ[m + n + 4, 0])

Rule 3057

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(C*x)/(b*d), x] + (Dist[(A*b^2 - a*b*B + a
^2*C)/(b*(b*c - a*d)), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[(c^2*C - B*c*d + A*d^2)/(d*(b*c - a*d)), Int[
1/(c + d*Sin[e + f*x]), x], x]) /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\tan ^4(c+d x)}{a+b \sec (c+d x)} \, dx &=\int \frac{\sin (c+d x) \tan ^3(c+d x)}{b+a \cos (c+d x)} \, dx\\ &=-\frac{a \tan (c+d x)}{b^2 d}+\frac{\sec (c+d x) \tan (c+d x)}{2 b d}-\frac{\int \frac{\left (-2 a^2+3 b^2-a b \cos (c+d x)-2 b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{b+a \cos (c+d x)} \, dx}{2 b^2}\\ &=\frac{x}{a}-\frac{a \tan (c+d x)}{b^2 d}+\frac{\sec (c+d x) \tan (c+d x)}{2 b d}-\frac{\left (a^2-b^2\right )^2 \int \frac{1}{b+a \cos (c+d x)} \, dx}{a b^3}-\frac{\left (-2 a^2+3 b^2\right ) \int \sec (c+d x) \, dx}{2 b^3}\\ &=\frac{x}{a}+\frac{\left (2 a^2-3 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 b^3 d}-\frac{a \tan (c+d x)}{b^2 d}+\frac{\sec (c+d x) \tan (c+d x)}{2 b d}-\frac{\left (2 \left (a^2-b^2\right )^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(-a+b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a b^3 d}\\ &=\frac{x}{a}+\frac{\left (2 a^2-3 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 b^3 d}-\frac{2 (a-b)^{3/2} (a+b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a b^3 d}-\frac{a \tan (c+d x)}{b^2 d}+\frac{\sec (c+d x) \tan (c+d x)}{2 b d}\\ \end{align*}

Mathematica [B]  time = 2.14776, size = 287, normalized size = 2.28 \[ \frac{\sec (c+d x) (a \cos (c+d x)+b) \left (\frac{8 \left (a^2-b^2\right )^{3/2} \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{a b^3}-\frac{4 a^2 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )}{b^3}+\frac{4 a^2 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}{b^3}-\frac{4 a \tan (c+d x)}{b^2}+\frac{4 c}{a}+\frac{4 d x}{a}+\frac{1}{b \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )^2}-\frac{1}{b \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2}+\frac{6 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )}{b}-\frac{6 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}{b}\right )}{4 d (a+b \sec (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^4/(a + b*Sec[c + d*x]),x]

[Out]

((b + a*Cos[c + d*x])*Sec[c + d*x]*((4*c)/a + (4*d*x)/a + (8*(a^2 - b^2)^(3/2)*ArcTanh[((-a + b)*Tan[(c + d*x)
/2])/Sqrt[a^2 - b^2]])/(a*b^3) - (4*a^2*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]])/b^3 + (6*Log[Cos[(c + d*x)/2
] - Sin[(c + d*x)/2]])/b + (4*a^2*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])/b^3 - (6*Log[Cos[(c + d*x)/2] + Si
n[(c + d*x)/2]])/b + 1/(b*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2) - 1/(b*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]
)^2) - (4*a*Tan[c + d*x])/b^2))/(4*d*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.072, size = 374, normalized size = 3. \begin{align*} 2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{ad}}-2\,{\frac{{a}^{3}}{d{b}^{3}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+4\,{\frac{a}{db\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-2\,{\frac{b}{ad\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-{\frac{1}{2\,db} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}+{\frac{1}{2\,db} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{a}{d{b}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{{a}^{2}}{d{b}^{3}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{3}{2\,db}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{1}{2\,db} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}+{\frac{1}{2\,db} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{a}{d{b}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{{a}^{2}}{d{b}^{3}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{3}{2\,db}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^4/(a+b*sec(d*x+c)),x)

[Out]

2/d/a*arctan(tan(1/2*d*x+1/2*c))-2/d/b^3*a^3/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b)
)^(1/2))+4/d/b*a/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-2/d*b/a/((a+b)*(a-b
))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-1/2/d/b/(tan(1/2*d*x+1/2*c)+1)^2+1/2/d/b/(tan(1
/2*d*x+1/2*c)+1)+1/d/b^2/(tan(1/2*d*x+1/2*c)+1)*a+1/d/b^3*ln(tan(1/2*d*x+1/2*c)+1)*a^2-3/2/d/b*ln(tan(1/2*d*x+
1/2*c)+1)+1/2/d/b/(tan(1/2*d*x+1/2*c)-1)^2+1/2/d/b/(tan(1/2*d*x+1/2*c)-1)+1/d/b^2/(tan(1/2*d*x+1/2*c)-1)*a-1/d
/b^3*ln(tan(1/2*d*x+1/2*c)-1)*a^2+3/2/d/b*ln(tan(1/2*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.68004, size = 1048, normalized size = 8.32 \begin{align*} \left [\frac{4 \, b^{3} d x \cos \left (d x + c\right )^{2} - 2 \,{\left (a^{2} - b^{2}\right )}^{\frac{3}{2}} \cos \left (d x + c\right )^{2} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) +{\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (2 \, a^{2} b \cos \left (d x + c\right ) - a b^{2}\right )} \sin \left (d x + c\right )}{4 \, a b^{3} d \cos \left (d x + c\right )^{2}}, \frac{4 \, b^{3} d x \cos \left (d x + c\right )^{2} - 4 \,{\left (a^{2} - b^{2}\right )} \sqrt{-a^{2} + b^{2}} \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right )^{2} +{\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (2 \, a^{2} b \cos \left (d x + c\right ) - a b^{2}\right )} \sin \left (d x + c\right )}{4 \, a b^{3} d \cos \left (d x + c\right )^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/4*(4*b^3*d*x*cos(d*x + c)^2 - 2*(a^2 - b^2)^(3/2)*cos(d*x + c)^2*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*co
s(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*
cos(d*x + c) + b^2)) + (2*a^3 - 3*a*b^2)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (2*a^3 - 3*a*b^2)*cos(d*x + c)
^2*log(-sin(d*x + c) + 1) - 2*(2*a^2*b*cos(d*x + c) - a*b^2)*sin(d*x + c))/(a*b^3*d*cos(d*x + c)^2), 1/4*(4*b^
3*d*x*cos(d*x + c)^2 - 4*(a^2 - b^2)*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^
2)*sin(d*x + c)))*cos(d*x + c)^2 + (2*a^3 - 3*a*b^2)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (2*a^3 - 3*a*b^2)*
cos(d*x + c)^2*log(-sin(d*x + c) + 1) - 2*(2*a^2*b*cos(d*x + c) - a*b^2)*sin(d*x + c))/(a*b^3*d*cos(d*x + c)^2
)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{4}{\left (c + d x \right )}}{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**4/(a+b*sec(d*x+c)),x)

[Out]

Integral(tan(c + d*x)**4/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [B]  time = 2.50431, size = 324, normalized size = 2.57 \begin{align*} \frac{\frac{2 \,{\left (d x + c\right )}}{a} + \frac{{\left (2 \, a^{2} - 3 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{b^{3}} - \frac{{\left (2 \, a^{2} - 3 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{b^{3}} - \frac{4 \,{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{\sqrt{-a^{2} + b^{2}} a b^{3}} + \frac{2 \,{\left (2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2} b^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

1/2*(2*(d*x + c)/a + (2*a^2 - 3*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/b^3 - (2*a^2 - 3*b^2)*log(abs(tan(1/2*
d*x + 1/2*c) - 1))/b^3 - 4*(a^4 - 2*a^2*b^2 + b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(
-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/(sqrt(-a^2 + b^2)*a*b^3) + 2*(2*a*tan(1/
2*d*x + 1/2*c)^3 + b*tan(1/2*d*x + 1/2*c)^3 - 2*a*tan(1/2*d*x + 1/2*c) + b*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x
 + 1/2*c)^2 - 1)^2*b^2))/d